Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide.
نویسندگان
چکیده
We present all-optical tuning and switching of a microcavity inside a two-dimensional photonic crystal waveguide. The photonic crystal structure is fabricated in silicon-on-insulator using complementary metal-oxide semiconductor processing techniques based on deep ultraviolet lithography and is completely buried in a silicon dioxide cladding that provides protection from the environment. By focusing a laser onto the microcavity region, both a thermal and a plasma dispersion effect are generated, allowing tuning and fast modulation of the in-plane transmission. By means of the temporal characteristics of the in-plane transmission, we experimentally identify a slower thermal and a fast plasma dispersion effect with modulation bandwidths of the order of several 100 kHz and up to the gigahertz level, respectively.
منابع مشابه
Optically tunable silicon photonic crystal microcavities.
We demonstrate the use of silicon photonic crystal based microcavity structures to perform light modulation at potentially giga-Hertz speeds through the use of optically induced plasma dispersion. The cavity configurations considered have the potential to operate at low pump power when the Q of the cavity involved is maximized.
متن کاملStrain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 μm
The majority of photonic crystals developed till-date are not dynamically tunable, especially in silicon-based structures. Dynamic tunability is required not only for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external disturbances and relaxation of tight device fabrication tolerances. Recent developments in photonic crystals have sugg...
متن کاملSilicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors.
A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the pass...
متن کاملThe role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays.
We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat t...
متن کاملElectrically injected InGaAs/GaAs photonic crystal membrane light emitting microcavity with spatially localized gain
Electrically injected photonic crystal membrane light emitting microcavities with spatially localized optical gain are reported. The localization of the InGaAs quantum well inside the defect cavity of the photonic crystal allows for efficient coupling of the optical mode to the gain medium and reduces nonradiative carrier recombination. The use of a buried oxide layer under the semiconductor me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2006